-
1 источник дохода
1) General subject: source of income, value generator2) Economy: profit earner3) Accounting: earner4) Finances: source of revenue, revenue source (англ. термин взят из статьи в журнале The Banker, Великобритания)5) Insurance: earning capacity6) Business: basis of income, revenue -
2 реле (p) (к)
relay (к)
электромеханическое устройство, контакты которого размыкают и /или замыкают управляемую цепь в зависимости от наличия или величины эл. сигналов в управляющей цепи, — an electromechanical device in which contacts are opened and/or closed by variations in the conditions of one electric circuit and thereby affect the operation of other devices in the same or other electric circuits.
-, арретирующее — latching relay
-, барометрическое (барореле для раскрытия парашюта) — barometric release (mechanism)
-, бесконтактное — contactless relay
- блокировки — blocking relay
-, биметаллическое — bimetallic relay
- блокировки (выключения) — lockout relay
- блокировки (выключения) автомата торможения — anti-skid lockout relay
- блокировки включения систем самолета, двигателя при обжатой передней амортстойке шасси — ground shift relay (actuated with nose oleo compressed)
-, блокировочное — blocking relay
реле, связанное с другими устройствами и, служащее для предотвращения срабатывания ипи повторного включения цепи при нарушении нормальной работы. — a relay wtlich со-operates with other devices to block tripping or to block reclosing on an out-of-step condition. or on power swings.
-, блокировочное — locking-out /lockout/ relay
реле, служащее для выключения оборудования и удержания его в выключенном состоянии при нарушении нормальной работы.данного оборудования, — an electrically operated hand or electrically reset device which functions to shut down and hold an equipment out of service on occurrence of abnormal conditions.
- включения (и выключения) — switching relay
реле, включающее или выключающее к-л. устройство или цепь, — the relay which can place another device or circuit in an operating or nonoperating state.
- включения (одного устройства к другому, напр., преобразователя к шине) — (inverter-to-bus) switching /connection, tie/ relay
- включения муфты стартера — starter meshing relay
- включения наземного питания — external power relay
- включения стартерного pежима (стартера-генератора) — motorizing relay
- времени — time relay
- времени, электромашинное — rotary time-delay relay
-, вызывающее срабатывание системы (цепи) — system /circuit/ actuating relay
-, выключающее — cutout /cut-out/ relay
- выключения (защитного устройства, контактора, оборудования) — tripping relay. used to trip а circuit breaker, contactor, equipment.
- выключения (блокировки оборудования при нарушении нормальных условий работы) — lock-out relay
- выключения зажигания (двиг.) — ignition cut-out relay
-, герметическое — pressure sealed relay
-, гидравлическое (сигнализатор) — hydraulic pressure switch
- давления (сигнализатор давления) — pressure switch
реле, срабатывающее при изменении давления подводимого газа или жидкости — a switch actuated by а change in the pressure of a gas or liquid.
- двухпозиционное (е замыканием контактов в двух крайних положениях) — double-throw relay. а relay which alternately completes а circuit at either of its two extreme positions.
-, двухполюсное — double pole relay
динамического торможения (фотокамеры) — (camera) dynamic braking relay
- дифференциальное — differential relay
реле с несколькими обмотками, которое срабатывает, когда разность величин подводимого напряжения или протекающего тока в обмотках достигает определенного уровня. — a relay with multiple windings that functions when the voltage, current, or power difference between the windings reaches а predetermined value.
-, дифференциально-минимальное (дмр) — differential reverse current cutout relay
- задержки времени — time delay relay
реле, обеспечивающее временной интервал между включением и выключением обмотки и перемещением якоря, — a relay in which there is an appreciable interval of time between the energizing or deenergizing of the coil and the movement of the armature.
-, защитное — protective relay
реле, служащее для защиты цепей в случае нарушения нормального режима работы, — a relay, the principal function оf which is to protect services from interruption or to prevent or limit damage to apparatus.
-, защитное дифференциальнoe — differential protective relay
- защиты от перенапряжения — overvoltage relay
-, командное — control relay
- контроля нагрузки — load monitor relay (lmr)
-, максимальное — overload relay
реле, срабатывающее, если сила тока, протекающего в его обмотке, превышает установленную величину, — a relay designed to operate when its coil current rises above а predetermined value.
- мгновенного действия — instantaneous relay
-, минимальное — reverse current (cut-out) relay
устанавливается в цепи между генератором пост. тока (или выпрямительным устройством) и шиной пост. тока для предотвращения обратного тока в случае, если напряжение на шине превышает выходное напряжение генератора. — reverse current cut-out relays are placed between the dc generator, transformerrectifier, and the dc bus to prevent reverse current flow, if the dc bus potential becomes greater than dc generator or transformerrectifier output.
- на два направления (двухпозиционное) — double-throw relay
- напряжения — voltage relay
реле, срабатывающее при заданной величине подаваемого напряжения, — a relay that functions at а predetermined value of voltage.
- обжатого положения шасси (для включения систем ла) — ground shift mechanism relay
- обратного тока — reverse-current relay
реле, срабатывающее при протекании тока в обратном направлении, — a relay that operates whenever current flows in the reverse direction.
- объединения шин (подсистем лев. и прав. борта) — bus tie relay (btr)
- отключения объединения шин — tie bus isolation relay
- перегрузки (максимальное) — overload relay
- переключения потребителей (pпп) — load monitor relay (lmr)
- переключения стартера-генератора на стартерный режим — motorizing relay
- переключения шин (эл.) — bus tie relay (btr)
- переменного тока — ас operated relay
-, пневматическое (сигнализатор давления) — pneumatic pressure switch
- подает напряжение на... — relay applies voltage to..., relay energizes...
- подает (+27 в) на... — relay applies (+27 v) to..., relay makes /closes/ circuit to supply /apply, feed/ +27 v to...
-, поляризованное — polarized relay
реле, направление перемещения якоря которого зависит от направления тока в его обмотке. — а relay in which the arma'ture movement depends on the direction of the current. its coil symbol is sometimes marked +.
- предельного значения скорости — maximum operating limit speed relay
- предельного значения числa m. — maximum operating limit mach-number relay
-, промежуточное (вспомогательное) — auxiliary relay
- пускового зажигания (двиг.) — starting ignition.relay
-, развязывающее — decoupling relay
-, разделительное — isolation relay
- сигнализатора обледенения — ice detector pressure switch
- сигнализации достижения предельной скорости — maximum operating limit speed (warning) relay
- сигнализации нарушения (параметров) питания — power relay. it may be an overpower or underpower relay.
- сигнализации отказа питания — power fail relay
- с механической блокировкой — latching relay
- соединения шин — bus tie relay (btr)
- с самоблокировкой — interlock relay
реле, в котором один якорь не может изменить свое положение или его обмотка не может оказаться под током, если другой якорь не занимает определенное положение. — a relay in which one armature cannot move or its coil be energized unless the other armature is in a certain position.
-, стопорное (запорное) — latch-in /latching, locking/ relay
реле, контакты которого стопорятся (фиксируются) либо в замкнутом или разомкнутом положении до момента расстопорения вручную или электрически. — а relay with contacts that lock in oither the energized or de-energized position until reset either manually or electrlcally.
- стрельбы — firing control relay, fire relay
- снимает напряжение с... (обесточивает цепь) — relay de-energizes..., relay removes voltage from...
- снимает +27 в с... — rela@ removes +27 v from..., relay breakes /opens/ circuit to remove +27 v from...
- срабатывает (и замыкает цепь) — relay operates (and closes circuit)
- срабатывает и (своими контактами) подает +27 в на клемму 1 — relay operates and applies +27 v to terminal 1
- срабатывает и приводит в действие эл. мотор — relay actuates electric motor
-, струйное
электромагнитное устройство, распределяющее входное давление (воздуха, рабочей жидкости) в двух выходных каналах. — jet relay
-, тепловое — thermal relay
реле, срабатывающее под воздействием нагрева, создаваемого протекаемым током. — а relay (hat responds to the heating effect of an energizing current.
-, управляющее — control relay
-, чувствительное — sensitive relay
-, шаговое — stepping relay
-, электромагнитное — electromagnetic relay
электромагнитный контактор, имеющий обмотку (обмотки) и подвижный якорь, — an electromagnetically operated switch composed of one or more coils and armatures.
-, эпектромашинное — rotary relay
-, электронное — electronic relay
электронная цепь, выполняющая функцию реле, без наличия подвижных деталей. — an electronic circuit that provides the functional equivalent of a relay, but has no moving parts.
отпускание p. (на размыкание контактов) — tripping off
срабатывание р. — operation of relay
включать р. — energize relay
выключать (обесточивать) р. — de-energize relay
переключать(ся) р. — reset relay (manually or electrically)
- притягивать якорь р. — attract relay armature
удерживать р. в заданном положении — hold relay in the given positionРусско-английский сборник авиационно-технических терминов > реле (p) (к)
-
3 режим
mode, condition, regime,
function, operation, rating, setting
- (вид работы аппаратуры, системы) — mode
- (заданные условия работы двигателя при определенном положении рычага управнения двигателем) — power setting. in changing the power setting, the power-control lever must be moved in the manner prescribed.
- (мощность или тяга двигателя в сочетании с определениями как взлетный, крейсерский максимально-продолжитепьный) — power, thrust. takeoff power /thrust/. maximum continuous power /thrust/
- (номинальный, паспортный, расчетный) — rating
работа в заданном пределе рабочих характеристик в определенных условиях. — rating is а designated limit of operating characteristics based оп definite conditions.
- (номинальная мощность или тяга двигателя, приведенная к стандартным атмосферным условиям) — power rating. power ratings are based upon standard atmospheric conditions.
- (при нанесении покрытия) — condition
- (работы агрегата по производительности) — rating. pump may be operated at low or high ratings.
- (тяги двигателя при апрелеленном положении руд) — thrust. run the engine at the takeoff thrust.
- (частота действий) — rate
- автоматического захода на посадку — automatic approach (eondition)
- автоматического обмена данными с взаимодействующими системами (напр., ins, tacan) — (mode of) transmission and/or reception of specifled data between systems in installations such as dual ons, ins, tacan, etc.
- автоматического управления полетом — automatic flight condition
- автоматической выставки (инерциальной системы) — self-alignment mode
- автоматической работы двигателя. — engine governed speed condition
at any steady running condition below governed speed.
- автоматической (бортовой) системы управления (абсу, сау) — afcs (automatic flight control system) mode
- автомодуляции — self-modulation condition
-, автономный (системы) — autonomus /independent/ mode
-, автономный (системы сау) — independent control mode
- авторотации (вертолета) — autorotation, autorotative condition
заход на посадку производится с выключенным двигателем на режиме авторотации несущего винта. — the approach and landing made with power off and entered from steady autorotation.
- авторотации (воздушного винта, ротора гтд, вращающегося под воздействием набегающего воздушного потока) — windmilling. propeller ог engine rotor(s) freely rotating because of а wind or airstream passing over the blades.
-, астроинерциальный — stellar inertial mode
- астрокоррекции — stellar monitoring mode
-, бесфорсажный (без включения форсажной камеры) — cold power /thrust/, попafterburning power /thrust/
-, бесфорсажный (без впрыска воды или воднометаноловой смеси на вход двигателя) — dry power, dry thrust
- бов (блока опасной высоты) — alert altitude (select) mode
-, боевой (работы двигателя) — combat /military/ rating, combat /military/ power setting
- бокового управления (системы сту) — lateral mode. the lateral modes of fd system are: heading, vor/loc, and approach.
- большой тяги (двиг.) — high power setting
- буферного подзаряда аккумулятора — battery trickle charge (condition)
- быстрого согласования (гиpoагрегата) — fast slave mode
- ввода данных — data entry mode
- вертикальной скорости (автопилота) — vertical speed (vs) mode
-, вертикальный (системы сду или сту) — vertical mode. the basic vertical modes are mach, ias, vs. altitude, pitch
-, взлетный (двигателя) — takeoff power
-, взлетный (тяга двиг.) — takeoff thrust
-, взлетный (полета) — takeoff condition
- висения (вертолета) — hovering
- "вк" (работы базовой системы курса и вертикали (бскв) при коррекции от цвм) — cmptr mode
-, внешний (работы сау) — coupled /interface/ control mode
-, возможный в эксплуатации) — condition (reasonably) expected in operation
- вор-илс (работы директорией системы) — vor-loc mode, v/l mode
- воспроизведения (магн. записи) — playback mode
- выдерживания (высоты, скорости) — (altitude, speed) hold mode
- выдерживания заданного курса — hog hold mode
- "выставка" (инерциальной системы) — alignment /align/ mode
в режиме "выставка" система автоматически согласуется e заданными навигационными координатами и производится выставка гироскопических приборов, — in align mode system automatically aligned with reference to navigation coordinates and inertial instruments are automatically calibrated.
- выставки, автоматический (инерциальной навигационной системы) — self-alignment mode. the align status can be observed any time the system is in self-alignment mode.
- вычисления параметров ветpa — wind calculator mode. wind calculator mode is based on manually entered values of tas
- вызова (навигационных параметров на индикаторы) — call mode
- вызова на индикаторы навигационных параметров без нарушения нормального самолетовождения (сист. омега) — remote mode. position "r" enables transmission and/or reception of specified data between systems in installations such as dual ons, ins/ons, etc.
-, генераторный (стартер-генератора) — generator mode
стартер-генератор может работать в генераторном или стартерном режиме, — starter-generator can operate in generator mode or in motor mode (motorizing functi on).
-, гиперболический (работы системы омега) — hyperbolic mode. in the primary hyperbolic mode the position supplied at initialization needs only to be accurate to within 4 nm.
- гиромагнитного (индукционного) компаса (гmk) — gyro-flux gate (compass) mode
- гиромагнитной коррекции (гмк) — magnetic slaved mode (mag)
- гmк (гиромагнитного компаca) — gyro-flux gate (compass) mode
- горизонтального полета — level flight condition
- горячего резерва (рлс) — standby (stby) mode
- гпк (гирополукомпаса) — dg (directional gyro) mode, free gyro mode of operation
- "да-нет" (работы, напр., сигнальной лампы) — "yes-no" operation mode
-, дальномерный (дме) — dме mode
-, дальномерный (счисления пути) (системы омега) — dead reckoning mode, dr mode of operation, relative mode
- двигателя (no мощности или тяге) — engine power /thrust/, power /thrust/ setting
- (работы двигателя) для захода на посадку — approach power setting
-, дежурный (работы оборудования) — standby rate (stby rate)
- завышенных оборотов — overspeed condition
- заниженных оборотов — underspeed condition
- заданного курса (зк) — heading mode
режим работы пилотажного командного прибора (пкп) дпя выхода на и выдерживания зк. — in the heading mode, the command bars in the flight director indicator display bank (roll) commands to turn the aircraft to and maintain this selected heading.
- заданного путевого угла (зпу) — course mode
- захвата луча глиссадного (курсового) радиомаяка — glideslope (or localizer) cарture mode
- "земля-контур" (рлс) — contour-mapping mode
- земного малого газа — ground idle power (setting)
with engines operating at ground idle (power).
- и/или тяга, максимальный продолжительный — maximum continuous power and/or thrust
-, импульсный (сигн. ламп) — light flashing
"откл. имп. режима" (надпись) — lt flash cutout
- инерциально-доплеровский (ид) — inertial-doppler mode
-, инерциальный (работы навигационной системы) — inertial mode
-, командный (автопилота) — (autopilot) command position
both autopilots in command position.
-, компасный — compass mode
в компасном режиме магнитная коррекция курса обеспечивается датчиком ид. — when compass mode is selected, magnetic monitoring is applied from detector unit.
-, компасный (apk) (автоматического радиокомпаса) — adf compass mode. the adf function switch is set to "comp" position, (to operate in the compass mode).
- "контроль" (инерц. системы) — test mode
обеспечивает автономную проверку системы без подкпючения контр.-повер. аппаратуры. — provides the system selftesting
- (-) "контур" -(работы рлс) — contour (mode) (cntr)
- коррекции (координат места) — up-dating mode
-, крейсерский (двиг.) — cruising /cruise/ power
-, крейсерский (на з-х двигатолях) (полета) — 3-engine cruise
-, крейсерский (полета) — cruising (condition)
-, крейсерский (с поэтапным увеличением оборотов при испытании двигателя) — incremental cruise power (or thrust)
-, крейсерский, номинальный (полета) — normal cruise (nc)
-, крейсерский рекомендуемый (максимальный) — (maximum) recommended cruising power
- крейсерского полета (для скоростной или максимальной дальности) — cruise method
-, критический (работы системы, двигателя) — critical condition
- критический, по углу атаки — stalling condition
- "курсовертикаль" ("kb") — attitude (атт) mode
в данном режиме от системы не требуется получение навигационных параметров. выдаются только сигналы крена (у) и тангажа (у). — in this mode ins alignment and navigation data, except attitude, are lost.
-, курса-воздушный — air data-monitored heading hoid mode
-, курсовой (при посадке по системе сп или илс) — localizer mode
- курсозадатчика (курсовой системы гмк или гик) — flux gate slaving mode. the mode when the directional gyro is slaved to the flux gate detector.
-, курсо-доплеровский — doppler-monitored heading hold mode
- магнитной коррекции (мк) — magnetic(ally) slaved mode (mag)
- максимальной (наибольшей) дальности — long range cruise (lrc). lrc is based on a speed giving 99 % of max, range in no wind and 100 % max. range in about 100 kt headwind.
- максимальной продолжительности (полета) — high-endurance cruise
-, максимальный крейсерский (mkp) (выполняется на предельной скорости) — high speed cruise (method)
-, максимальный продолжительный (мпр) (двиг.) — maximum continuous power (мcp)
-, максимальный продолжительный (по тяге) — maximum continuous thrust (мст)
increase thrust to мст.
- малого газа — idling power (setting)
попеременная работа двигателя на номинальной мощности и режиме малого газа или тяги, — one hour of alternate fiveminute periods at rated takeoff power and thrust аnd at idling power and thrust.
- малого газа на земле — ground idling power /conditions/
- малого газа при заходе на посадку — approach idling power /conditions/
- малой тяги (двиг.) — low power setting
- (-) "метео" (работы рлс) — weather (mode)
- "метео-контур" (рлс) режим — contour-weather mode
- (5-ти) минутной мощности (двиг.) — (five-) minute power
- "мк" (магнитной коррекции) — mag
- мощности, максимальный продолжительный (двиг.) — maximum continuous power
- мощности, чрезвычайный — emergency power
- набора высоты — climb condition
- "навигация" (инерциальной системы) — navigation (nav) mode
при заданном режиме система обеспечивает вычисление навигационных и директорных параметров и выдает информацию на пилотажные приборы и сау. — in this mode system computes navigation and steering data. provides attitude information to flight instruments and fcs.
- наибольшей (макеимальной) дальности — long range cruise (lrc)
горизонтальный полет на скорости наибольшей дальности, на которой километровый расход топлива при полете на заданной высоте наименьший. — а level flight at а given altitude and best range cruise speed giving the minimum kilometric fuel consumption.
- наибольшей продолжительности (полета) — high-endurance cruise
горизонтальный полет на скорости наибольшей продолжнтельности, на которой часовой расход топлива при полете на заданной высоте наименьший. — а level flight at а given altitude and high-endurance cruise speed giving the minimum fuel flow rate (in kg/h or liter/h)
- начала автоматической работы (нар режим начала автоматического регулирования работы гтд) — engine governed run/operation/ onset mode
- нвк (начальной выставки — initial heading alignment
-, непрерывной (обработки данных) — burst mods (data processing)
-, нерасчетный — off-design rating
-, неуетановившийся — unsteady condition
- (0.65) номинала, на бедной смеси — (65%) power, lean mixture setting
-, номинальный (двиг.) — (power) rating, rated power
-, номинальный (mпp) — maximum continuous power
- нормального обогрева (эп.) — normal-power heat (condition)
-, нормальный (работы агрегата) — normal rating
-, номинальный крейсерский (полета) — normal cruise (nc). used on regular legs and based on m = 0.85.
- обзора земной поверхности (рлс) — ground-mapping (map) mode
- обнаружения грозовых образеваний — thunderstorm detection mode (wx)
- "обогрев" (инерц. системы) — standby mode
режим предназначен для создания необходимых температурных условий работы элементов инерциальной системы (гироскопов, блоков автоматики и электроники). — the standby mode is а heating mode during which fast warm-up power is applied to the navigation unit until it reaches operating temperature.
- обогрева — heating mode
- обогрева лобовых стекол "слабо", "сильно" — windshield "warm up", "full power" heating rating
-, одночасовой максимальный (двиг.) — maximum one-hour power
- ожидания ввода координат исходного места самолета — initial position entry hold mode
- ожидания посадки — holding
-, оптимальный экономический (двиг.) — best economy cruising power
- освещения меньше-больше (яркость) — dim-brt light modes check lights in dim and brt modes.
-, основной навигационный (сист. "омега") — primary navigation mode
- отключенного шага (программы) — step off mode
- отсутствия сигналов ивс (системы омега) — no tas mode
- оценки дрейфа гироскопа — gyro drift evaluation mode
- перемотки (маги, ленты) — (tape) (re)wind mode
- пересиливания автопилота — autopilot overpower operation /mode/
-, переходный — transient condition
- планирования — gliding condition
- повышенных оборотов — overspeed condition
- полета — flight condition /regime/
состояние движения ла, при котором параметры, характеризующие это движение (например, скорость, высота) остаются неизменными в течение определенного времени. — it must be possible to make а smooth transition from one flight condition to any other without exceptional piloting skill, alertness, or strength.
- полета, критический — critical flight (operating) condition
- полета на курсовой маяк (при посадке) — localizer (loc) mode. flying in loc (or vor) mode.
- полета на станцию вор — vor mode
- полета, неустановившийся — unsteady flight condition
- полета по маяку вор — vor mode
- полета по системе илс — ils mode
- полета по условным меридианам — grid mode
данный режим применяется в районах, не обеспечивающих надежность компасной информации. — the grid mode can be used in areas where compass information is unreliable.
- полета, установившийся — steady flight condition
- полетного малого газа — flight idle (power)
-, полетный (двиг.) — flight power
-, пониженный (ниже номинала) (двиг.) — derating
- пониженных оборотов — underspeed condition
при возникновении режима пониженных оборотов рогулятор оборотов вызывает дополнительное открытие дроссельного крана. — for underspeed condition, the governor will cause the larger throttle opening.
-, поперечный (системы сду или сту) — lateral mode. the basic lateral modes are heading, vor/loc and approach.
-, посадочный (полета) — landing condition
- правой (левой) коррекции (оборотов двигателя вертолета) — engine operation with throttle control twist grip turned clockwise (counterclockwise)
-, практически различаемый — practically separable operating condition
к практически различаемым режимам полета относятся: взлетный, крейсерский (mapшрутный) и посадочный, — practically separable operating condition, such as takeoff, en route operation and landing.
- (работы двигателя), приведенный к стандартной атмосфере — power rating based upon standard atmospheric conditions
- приведения к горизонту — levelling
- продления глиссады — glideslope extension mode
the annunciator indicates when glideslope extension (ext) mode provides command signals to the steering computer.
- продольного управления (системы сту) — vertical mode. the vertical modes of fd system are: mach, ias, vs. altitude, pitch.
- просмотра воздушного пространства (переднего) — airspace observation mode (ahead of aircraft)
- просмотра воздушного пространства на метеообстановку (рлс) — radar weather observation mode
- просмотра земной поверхности (рлс) — ground mapping operation. the antenna is tilted downward to receive ground return signals.
- прямолинейного горизонтального полета — straight and level flight condition
- (частота) пусков ракет — (rocket firing) rate
- "работа" (положение рычага останова двигателя) — run
- "работа" (инерциальной навигационной системы) — navigate mode, nav mode. system automatically changes from alignment to navigate mode.
- работы — condition of operation
test unit in particular condition of operation.
- работы (агрегата, напр., наcoca) — rating
- работы (агрегата по продолжительности) — duty (cycle)
режим работы может быть продопжитепьным или повторно-кратковременным. — the duty cycle may be continuous or intermittent.
- работы (инерциальной системы) — mode of operation, operation mode
- работы, автоматический (двиг.) — governed speed /power/ setting
- работы автоматической системы управления (абсу, сау) — autoflight control system (afcs) mode
- работы автопилота — autopilot mode
- работы автопилота в условиях турбулентности — autopilot turbulence (turb) mode
при работе в условиях турбулентности включается демпфер рыскания для обеспечения надежной управляемости и снижения нагрузок на конструкцию ла. — use of the yaw damper with the autopilot "turb" mode will aid in maintaining stable control and in reducing structural loads.
- работы автопилота при входе в турбулентные слои атмосферы — autopilot turbulence penetration mode
данный режим применяется при полете в условиях сильной турбулентности воздуха, — use of the autopilot turbulence penetration mode is recommended for autopilot operation in severe turbulence.
- работы автопилота с директорной системой, совмещенный — ap/fd coupled mode
- работы двигателя (по мощности) — engine power (setting)
- работы двигателя (по тяге) — engine thrust (setting)
- работы двигателя (по положению руд) — engine power setting
- работы двигателя в особых условиях, (повышенный) — emergency (condition) power
- работы двигателя на земле — engine ground operation
- работы двигателя на малых оборотах — engine low speed operation
- работы двигателя, номинальный — engine rating. ths jt9d-з-за engines operate at jt9d-3 engine ratings.
- работы (двигателя), приведенный к стандартной атмосфере — power rating /setting/ based upon standard atmospheric conditions
- работы источника света, установившийся — light source operation at steady value
- работы, кратковременный — momentary operating condition
- работы no времени (агрегата) — time rating
- работы, повторно-кратковременный (агрегата) — intermittent duty
пусковая катушка работает в повторно-кратковременном режиме. — booster coil duty is intermittent.
- работы (системы), полетный — (system) flight operation
при выпуске передней опоры шасси система переключается на полетный режим, — when the nose lg is eхtended, the function of the system is transferred to flight operation.
- работы no сигналам станции омега — omega mode operation
- работы, продолжительный (агрегата) — continuous duty
генератор двигателя работает в продолжительном режиме, — the engine-driven generator duty is continuous.
- работы противообледенительной системы, нормальный — normal anti-icing
- работы противообледенительной системы, форсированный — high anti-icing
- работы самолетного ответчика (а - на внутренних линиях, в - на международных) — transponder mode (а - domestic, в - international)
- работы системы траекторного управления (сту), боковой — lateral mode
- работы сту, продольный — vertical mode
- рабочий (работы автопилота) — (autopilot) active position both autopilots in command positions, one active and one standby.
- рабочий (работы оборудования) — normal rate (norm rate)
- равновесной частоты (вращения) (двиг.) — on-speed condition
- равновесных оборотов — оп-speed condition
работа регулятора оборотов в режиме равновесных оборотов. — the constant speed governor operation under on-speed condition.
-, радиотелеграфный, тлг (автоматич. радиокомпаса) — c-w operation
-, радиотелеграфный (связи) — c-w communication, radio telegraphic communication
-, радиотелефонный, тлф (apk) — rt (radio telephone), voice operation (v), voice
-, радиотелефонный (связи) — voice communication, radio telephone communication
переключить передатчик на радиотелефонную связь, — set the transmitter for voice communication.
-, рамочный (арк) — loop mode
- распознавания светила — star identification mode
-, располагаемый максимальный продолжительный (двиг.) — available maximum continuous power
-, расчетный — rating
-, расчетный (условия работы) — design condition
- регулирования избыточного давления (системы скв) — differential pressure control (mode)
-, резервный (аварийный) (дв.) — emergency power rating
работа двигателя при гидромеханическом управлении оборотами и температурой при отказе электронной системы управления.
-, резервный (работы автопилота) — (autopilot) standby position
- самовращения (несущего винта) — autorotation, autorotative condition
- самоориентирования (переднего колеса шасси) — castoring
- скоростной дальности — high-speed cruise method
- "слабо", "сильно" (обогрева лобовых стекол) — (windshield heat) warm up, full power
- слабого обогрева (эл.) — warm-up heat (condition)
-, следящий (закрылков) — (flap) follow-up operation (mode)
when the flaps are raised, the flap follow-up system operates the slat control valve.
-, смешанный (работы спойлеров) — drag/aileron mode. а drag/aileron mode is used during descent both for retardation and lateral control.
- снижения — descent condition
-, совмещенного управления — override control mode
оперативное вмешательство в работу включенной системы.
-, совмещенный (при работе с др. системой) — coupled mode
-, совмещенной (работы автопилота) — autopilot override operation /mode/
в этом режиме отключаются рм и корректор высоты и летчик оперативно вмешивается в управление ла посредством штурвала и педалей. — то manually or otherwise deliberately overrule autopilot system and thereby render it ineffective.
-, совмещенный — both mode
(работы рлс в режимах обзора метеообразований и земной поверхности и индицирования маяков) — for operation in rad and bcn modes.
- согласования (автопилота) — synchronization mode
- согласования (работы следящей системы) — slave /synchronization/ mode
- стабилизации (крена, тайгажа, направления, автопилота) — roll (pitch, yaw) stabilization mode
- стабилизации (работы сту) — hold mode
the vertical and lateral modes are hold modes.
- стабилизации крена (в сту) — roll /bank/ (attitude) hold mode
- стабилизации курса (aп) — heading hold mode
- стабилизации тангажа (в сту) — pitch (attitude) hold mode
-, стартерный (всу) — engine start mode
apu may run in the engine start mode or as apu.
-, стартерный (стартер-гоноратора) — motor(izing) mode, (with) starter-generator operating as starter
- стопорения (работы следящей системы) — lock-out mode
- "сход(на) нзад" — return-to-selected altitude (mode)
- счисления пути (или дальномерный) (системы омега) — dead reckoning mode, dr mode of operation, relative mode
-, температурный — temperature condition
- тлг (работы арк) — c-w operation
- тлф (арк) — rt (radio telephone), voice
-, тормозной (работы спойле — drag /retardation/ mode
- управления — control mode
- управления в вертикальной плоскости (ап) — vertical mode
- управления в горизонтальной плоскости (инерциальной системы) — lateral control mode
управление по курсу, на маяки вор и крм. — the basic lateral modes are heading, vor/loc and approach.
- управления, позиционный (no командно-пилотажному прибору) — flight director control mode
- управления по крену (aп) — roll (control) mode
- управления, поперечный (автопилота) — lateral mode
- управления по тангажу (ап) — pitch (control) mode
- управления, продольный (автопилота) — vertical mode. vertical command control provides either vertical speed or pitch command.
- управления, штурвальный — manual (flight) control
-, усиленный (дополнительный, форсированный) (двиг.) — augmented power (rating)
при данном режиме увеличиваются температура газов на входе в турбину, обороты ротора или мощность на валу. — engine augmented takeoff power rating involves increase in turbine inlet temperature, rotor speed, or shaft power.
-, установленный (для данных условий испытаний двигателя) — rated power. а 30-hour run consisting of alternate periods of 5 minutes at rated takeoff power.
-, форсажный (с включенной форсажной камерой) — reheat /afterburning/ power /thrust/
-, форсажный (по тяге двиг.) — reheat thrust
-, форсажный (с впрыском воды или водометаноловой смеси на вход двигателя) — wet power, wet thrust
-, форсажный, полный (двиг.) — full reheat power /thrust/
- форсированного обогрева — full-power heat (conditions)
-, форсированный (работы агрегата) — high rating
-, форсированный (усиленный) (двиг.) — augmented power /thrust/
-, форсированный взлетный — augmented takeoff power
- холостого хода (двигателя вертолета с отключенной трансмиссией) — idle run power (with rotor drive system declutched)
- холостого хода (генератора, всу, электродвигателя) — по-load operation
-, чрезвычайный (работы двигателя в особых условиях) — emergency (condition) power
-, чрезвычайный (по тяге двигателя) — emergency thrust
-, чрезвычайный, боевой (двиг.) — combat /war/ emergency power
-, штурвальный (управления ла) — manual control mode
-, экономичный крейсерский — (best) economy cruising power
-, эксплуатационный (работы, агрегата, двигателя, самолета) — operational /operating/ condition
-, эксплуатационный (двиг.) — operational power rating
эксплуатационные режимы включают: взлетный, максимальный продолжительный (крейсерский), — operational power ratings cover takeoff, maximum continuous (and cruising) power ratings.
-, эксплуатационный полетный (двиг.) — flight power (rating)
двигатель должен нормально работать на всех эксплуатационных (полетных) режимах, — the engine must be capable of operation throughout the flight power range.
-, электромоторный (стартер генератора) — motor(izing) mode
-, элеронный (работы спойлеров) — aileron mode, lateral control augmentation mode
в p. (работы оборудования) — in mode
presently flying in heading (h) mode on a 030° heading.
в p. самоориентирования (о переднем колесе шасси) — in castor, when castoring
в пределах эксплуатационных р. — within (approved) operating limitations
выход на р. малого газа (двиг.) — engine (power) setting at idle, engine idle power setting
изменение p. работы двигатепя — change in engine power (or thrust)
метод установки (получения) (заданного p. работы двигателя) — methods for setting (engine) thrust /power/
на (взлетном) р. (двиг.) — at (takeoff) power
with the engine operating at takeoff power.
на (взлетном) р. (полета) — under (takeoff) condition
на максимальном продолжительном p. — at maximum continuous power
обороты (двигателя) на взлетном р. — takeoff (rotational) speed engine run at takeoff power with takeoff speed.
обороты (двигателя) на максимальном продолжительном p. — maximum continuous speed engine run at rated maximum continuous power with maximum continuous speed.
переключение p. (работы оборудования) — mode selection
переход (вертолета) от нормального р. к р. висения — reconversion
полет на крейсерском р. — cruise flight
полет на р. висения — hovering flight
при работе двигателя на взлетном р. — with engine at takeoff power, with takeoff power on (each) engine
при работе каждого двигателя на р., не превышающем взлетный — with not more than takeoff power on each engine
при установившемся р. работы с полной нагрузкой — at steady full-load condition
(75)% максимального продолжительного (или номинального) р. — (75) percent maximum continuous power (thrust)
работа на (взлетном) р. (двиг.) — (takeoff) power operation, operation at takeoff power
установка p. работы (двиг.) — power setting
этап p. (при испытаниях двигателя) — period. during the third and sixth takeoff power periods.
включать р. (работы аппаратуры системы) — select mode
включать р. продольного (поперечного) управления (aп, сду) — select vertical (lateral) mode
включить систему в режим (напр., "выставка") — switch the system to (align mode, switch the system to operate in (align mode)
выдерживать (взлетный) р. (двиг.) — maintain (takeoff) power
выходить на (взлетный) р. (двиг.) — come to /attain, gain/ (takeoff) power /thrust/, set engine at takeoff power /thrust/, throttle to takeoff power /thrust/
выходить на р. прямолинейного горизонтального полета гонять двигатель на (взлетном) р. — recover to straight and level flight run the engine at (takeoff) power
изменять р. работы двигателя — change engine power
изменять установленный р. (двиг.) — change power setting
лететь в автоматическом р. управления — fly automatically
лететь в курсовом р. — fly heading (н) mode
лететь в штурвальном р. — fly manually
передавать в телеграфном р. — transmit on c-w /rt/
передавать в радиотелефонном р. — transmit on voice
переключать р. — select mode
переключаться на р. — switch to mode the computer automatically switches to course mode.
переходить (автоматически) в режим (напр., курсовертикаль) — system automatically changes to атт mode
переходить с р. (малого газа) на (взлетный) р. (двиг.) — come from (idle) power to (takeoff) power
проводить р. (30 часовых) испытаний последовательно чередующимися периодами по... часов — conduct а (30-hour) run consisting of alternate periods of... hours
работать в р. — operate on /in/ mode
работать в режиме гпк — operate in dg mode, be servoed to directional gyro
работать в индикаторном р. (о сельсине) — operate as synchro indicator
работать в трансформаторном р. (о сельсине) — operate as synchro transformer
работать на (взлетном) р. (двиг.) — operate at (takeoff) power /thrust/
работать на р. малого газа — idle, operate at idle (power)
увеличивать р. работы (двиг.) (до крейсерского) — add power (to cruising), throttle (to cruising power)
уменьшать p. двигателя (до крейсерского) — reduce power to cruising
устанавливать взлетный р. (двиг.) — set takeoff power /thrust/, set engine at takeoff power
устанавливать компасный р. работы (apk) — select compass mode
устанавливать p. набора высоты — establish climb
устанавливать р. полета — establish flight condition
устанавливать рамочный р. работы (арк) — select loop mode
устанавливать (взлетный) р. работы двигателя — set (taksoff) power /thrust/, set the engine at takeoff power /thrust/
устанавливать p. снижения — establish descentРусско-английский сборник авиационно-технических терминов > режим
-
4 ток
current
движение элеронов по проводнику. измеряется в амперах и обозначается буквой i. — the movement of electrons through а conductor. measured in amperes,and ist symbol is i.
- (нагрузка) — load
- автостабилизации — autostabilization current
-, большой — high current
-, вихревой — eddy current(s)
also called foucault currents, inducted in body.
- включения (реле) — (relay) pickup current
- выключения (реле) — (relay) dropout /tripping/ current
- высокого напряжения (в оборудовании) — high-voltage current
- высокого напряжения (в системе зажигания) — high-tension (нт) current
- высокой частоты — high-frequency (hf) current
- датчиха момента акселерометра — torque current. a torque current being а measure of the restoring torque.
-, двухфазный — two-phase current
-, зарядный (аккумулятора) — (battery) charge current
monitor dc ammeter for normal charge current on battery.
-, малый (слабый) — low current
- нагрузки — load current
- нагрузки (разрядки) аккумулятора, элемента — (battery) drain. current supplied by a battery or cell.
-, обратный — reverse current
-, отпускания (реле) — dropout current
- отрыва (реле,прерывателя) — dropout current
-, переменный — alternating current (ас), (ac)
электрический ток, периодически изменяющийся по силе и направлению, т.е. достигающий макс. значения в одном направлении, затем падающий до нуля, и снова достигающий макс. значения, но в противоположном направлении. — а flow of electricity which reaches maximum in one direetion, decreases to zero, then reverses itself and reaches maximum in the opposite direction. the cycle is repeated continuously.
-, постоянный — direct current (do),(dc)
эл. ток, не изменяющийся ни по силе, ни по направлению. — an essentially constant-value current that flows in only one direction.
-, потребляемый — current drawn /consumed/
-, потребляемый (параметр в технических данных, таблице) — current, current requirements
-, потребляемый к-л. нагрузкой — current drawn /consumed, taken/ by а load
- потребляемый от источника питания — current drawn (consumed, taken from power source, power source drain
-, пусковой — starting current
-, рабочий — operating current
-, разрядный (акк.) — discharge current, drain
- расходуемый источником питания — power source drain
-, световой — light-inducted current
ток, возникающий в датчике под воздействием светового потока.
- срабатывания реле — relay operating current
- срабатывания реле (в отличие от тока отпускания) — relay pickup current
-, трехфазный — three-phase current
ток, поступающий по трем проводникам, каждый являющийся обратным проводом для двух других. — а current delivered through three wires - each wire serving as the return for the other two.
-, трогания — pickup current
ток, вызывающий срабатывание электромагнитных устройств. — the current at which a magnetically-operated device starts to operate.
- удержания (реле) — holding current
sufficient current in the relay winding to keep the relay energized.
- утечки — leakage current
-, электрический — electric current
магнитные поля, создаваемые электротоком. агрегат переменного (постаянного) тока (напр., генератор) — magnetic fields created by electric currents. ас (dc) unit, ас (dc) generator
измеритель тока (нагрузки) — loadmeter
под т. — energized
не отсоединять проводки, если цепь находится под током (напряжением) — do not disconnect wiring when the system is energized.
под током (напряжением) — alive
генератор под током, напряжением. — generator is alive.
включать т. — switch on current
при включении тока автостабилизации, якорь соленоида вызывает срабатывание клапана. — а solenoid, when the autostabilization current is switched on, pushes the central armature against a valve.
держать под т. — energize, keep energized
do not energize the solenoid for more than 10 sec.
работать на переменном (постоянном) т. — be ас (dc) powered
работать на переменном т. частотой... гц и напряжением...вольт — operate at а supply of... hz,... volts ас, be powered by... hz, volt ас
работать на постоянном т. напряжением... вольт — operate at а supply of... volts dc, be powered by... volt dcРусско-английский сборник авиационно-технических терминов > ток
-
5 одновибратор
- univibrator
- trigger circuit
- start-stop multivibrator
- single-trip trigger circuit
- single-trip trigger
- single-trip multivibrator
- single-shot trigger circuit
- single-shot trigger
- single-shot multivibrator
- single-shot flip-flop
- single vibrator
- single flip-flop oscillator
- one-shot multivibrator
- one-shot generator
- one-shot
- one-cycle multivibrator
- monovibrator
- monostable trigger circuit
- monostable multivibrator
- monostable flip-flop
- monostable circuit
- monostable
- monoflop
- mono
- latching circuit
- kipp relay
- kipp oscillator
- gated multivibrator
- gate multivibrator
- delay multivibrator
- biased multivibrator
моностабильный элемент
одновибратор
-
[ГОСТ 2.743-91]Одновибраторы -"ждущие мультивибраторы" представляют собой микросхемы, которые в ответ на входной сигнал (логический уровень или фронт) формируют выходной импульс заданной длительности.
Длительность определяется внешними времязадающими резисторами и конденсаторами.
То есть можно считать, что у одновибраторов есть внутренняя память, но эта память хранит информацию о входном сигнале строго заданное время, а потом информация исчезает.
В стандартные серии микросхем входят одновибраторы двух основных типов:
- одновибраторы без перезапуска;
- одновибраторы с перезапуском
Одновибратор без перезапуска не реагирует на входной сигнал до окончания своего выходного импульса.
Одновибратор с перезапуском начинает отсчет нового времени выдержки Т с каждым новым входным сигналом независимо от того, закончилось ли предыдущее время выдержки.
В случае, когда период следования входных сигналов меньше времени выдержки Т, выходной импульс одновибратора сперезапуском не прерывается.
Если период следования входных запускающих импульсов больше времени выдержки одновибратора Т, то оба типа одновибраторов работают одинаково.
Одновибратор без перезапуска
Одновибратор с перезапуском
[Ю.В. Новиков. Введение в цифровую схемотехнику]
Параллельные тексты EN-RU
Monostable flip-flop
The output variable will be 1 only if the input variable changes to 1.
The output variable will remain 1 for 100 ms, regardless of the duration of the input value 1 (non-retriggerable).
Without a 1 in the function block, the monostable flip-flop is retriggerable.
The time is 100 ms in this example, but it may be changed to any other duration.
[Schneider Electric]Одновибратор
Значение переменной на выходе равно 1, если входная переменная становится равной 1.
Выходная переменная сохраняет значение 1 в течение 100 мс независимо от времени, в течение которого входная переменная продолжает оставаться равной 1 (без выполнения повторного запуска элемента).
Если в обозначении функции элемента не стоит "1", то это одновибратор с перезапуском.
В данном примере время выходного импульса составляет 100 мс, но его можно изменить на любое другое.
[Перевод Интент]Тематики
- Булева алгебра, элементы цифровой техники
Синонимы
EN
- biased multivibrator
- delay multivibrator
- gate multivibrator
- gated multivibrator
- kipp oscillator
- kipp relay
- latching circuit
- mono
- monoflop
- monostable
- monostable circuit
- monostable flip-flop
- monostable multivibrator
- monostable trigger circuit
- monovibrator
- one-cycle multivibrator
- one-shot
- one-shot generator
- one-shot multivibrator
- single flip-flop oscillator
- single vibrator
- single-shot flip-flop
- single-shot multivibrator
- single-shot trigger
- single-shot trigger circuit
- single-trip multivibrator
- single-trip trigger
- single-trip trigger circuit
- start-stop multivibrator
- trigger circuit
- univibrator
Русско-английский словарь нормативно-технической терминологии > одновибратор
-
6 производящая функция
1) Engineering: generator, generatrix2) Mathematics: GF (generating function), course-of-value function (logic), generating function3) Information technology: course-of-value function4) Drilling: generatixУниверсальный русско-английский словарь > производящая функция
-
7 соответствовать установившейся практике
Соответствовать установившейся практике-- The basic composition of the bath corresponds to usual practice. Соответствующий - appropriate (to); associated, involved, applicable, relevant, along the lines of (имеющий отношение к делу); proper, suitable, matching (подходящий); commensurate with, associated, corresponding (связанный зависимостью); corresponding, respective (при сопоставлении нескольких результатов, деталей); conforming to, complying with (подчиняющийся)The appropriate values are shown in Table and Fig.Physical properties appropriate to methanol boiling at atmospheric pressure were used throughout this analysis.It is important to note that the engine contained the normal regenerator disk and associated seals.It is possible that it [resonance] is not recognized as the casual agent and a general beefing-up of the parts involved is undertaken as a fix for the problem.The supplier shall establish procedures for identifying the product from applicable drawings.sT, sr are the stresses to give a specific strain or rupture in the lifetime of the vessel at the relevant temperature.Emergency shower, drench hose, and combination units are not a substitute for proper primary protective devices.A manipulator along the lines of Fig. has been examined by X.It is preferable to accept weaker weld metals with good ductility, rather than a weld metal which has matching strength but poor ductility.The atomizing air is preheated to the same temperature as the heated (temperature commensurate with 100 SSU viscosity) residual fuel oil entering the burner oil tube.Over the past few decades the generator capacity has been increasing steadily, warranting a corresponding increase in the rotor diameter.The initially measured value of the drag coefficient in each run is 10 percent to 12 percent higher than the corresponding steady-state value.Surrounding the stagnation zone are streak lines indicating that the fluid adjacent to the plate surface is flowing outward toward the respective edges.Русско-английский научно-технический словарь переводчика > соответствовать установившейся практике
-
8 регулятор
regulator
устройство для поддержания параметра в заданных пределах, или изменения его по заданному закону (программe). — а device, the function of which is to maintain а designated characteristic at а predetermined value or to vary it according to a predetermined plan.
- (часть системы блока или контура регулирования) — control
- (ручка) — control (knob)
set the ind dim control to maximum light intensity.
- аварийной подачи кислорода по высотам — emergency oxygen altitude compensating regulator
-, автоматический — automatic regulator
автоматический или управляемый вручную регулятор предусмотрен для регулирования воздушного или газового потока. — an automatic or manual regulator is provided for contrailing the intake or exhaust airflow.
- весового расхода воздуха (системы кондиционирования) — air mass flow regulator
- времени приемистости — acceleration time adjuster
- входного направляющего апnapata — inlet guide vane control
-, гидро-механический (топливного насоса высокого давления) — hydro-mechanical governor
- громкости — volume control
переменное (регулируемое) сопротивпение уровня для изменения сигнала приемника или усилителя. — а variable resistor for adjusting the loudness of a radio receiver or amplifying device.
- громкости, автоматический — automatic volume control
автоматически поддерживает постоянный уровень выходного сигнала приемника или усилителя. — maintains the output of a radio receiver or amplifier, substantially constant.
- давления — pressure regulator
- давления, автоматический (ард, системы сарd) — (automatic) air pressure regulator
- давления, барометрический — barometric pressure regulator /controller/
- давления в кабине — cabin pressure regulator
- двигателей, электронный (рэд) — electronic engine control
- зазора (тормозных дисков колеса) — wear adjuster
послe растормаживания колеса регулятор зазора автоматически устанавливает необходимый зазор между неподвижными и вращающимися дисками (рис. 32). — wear adjuster keeps the preset working clearance between the rotor and stater plates of wheel brake.
- избыточного давления (рид) (в системе кондиционирования) — (positive) pressure differential regulator, differential pressure regulator
- избыточного давления (рд) (кислородной маски) — differential pressure regulator
- (компенсации) износа (тормозных дисков) — wear adjuster
- компенсации подачи кислорода по высоте — altitude compensating oxygen regulator
- максимальных оборотов (насоса-регулятора) — maximum speed governor
- максимальных оборотов (не допускающий заброса оборотов) — overspeed governor
- малого газа (гтд) — idling speed governor
- направляющего аппарата (pha) — inlet guide vane control (unit)
- напряжения — voltage regulator
устройство для поддержания напряжения генератора в заданных пределах. — а device that maintains or varies the terminal voltage of а generator at а predetermined value.
- напряжения, угольный — carbon-pile voltage regulator
- настройки (регулировочный винт) — adjuster
- настройки клапана перелома характеристик приемистости — acceleration time adjuster
- настройки максимальных оборотов (топливного регулятора) — maximum speed adjuster
- натяжения троса — cable tension adjuster /regulator/
- обогрева — temperature control
- оборотов — speed governor
механизм для поддержания оборотов двигателя (ротора) в заданных пределах. — governor is а mechanism designed to maintain the speed (rpm) of engine (rotor) within reasonably constant limits.
- оборотов воздушного винта — propeller speed governor
при превышении заданного числа оборотов, регулятор поворачивает лопасти воздушного винта в сторону большого шага, а при падении оборотов - в сторону малого шага. — governor is in onspeed condition when its system in neutral position, overspeed blades are moved to higher pitch, underspeed - blades are moved to lower pitch.
- оборотов, всережимный — all-speed governor
- оборотов, гидромеханический — hydraulic (speed) governor
регулятор имеет крыльчатку, работающую в качестве центробежного насоса масла, жидкости. — this governor consists of an impeller acting as а centrifugal pump with oil as fluid.
- оборотов (на режиме) малого газа — idling, speed governor
для поддержания оборотов малого газа при изменении нагрузки на агрегаты двигателя и температуры воздуха на входе в двигатель. — то maintain idling rpm under varying conditions of accessory load and air intake temperature.
- оборотов ротора (компресcopa) высокого давления (квд) — hp rotor /shaft/ (speed) governor
для поддержания постоянных оборотов ротора квд на заданном режиме и изменения режима двигателя при перемещении руд. — то maintain the hp rotor speed constant at the set power rating and to change the engine power with the throttle being moved.
- оборотов ротора (компресcopa) низкого давления (кнд) — lp rotor /shaft/ (speed) governor
- оборотов, центробежный — centrifugal governor
- падения давления (насосарегулятора) — pressure drop governor
- подачи кислорода (рпк, кислородного прибора) — oxygen regulator
- подачи кислорода по высотам — altitude compensating oxygen regulator
the altitude compensating regulator regulates the oxygen flow in relation to cabin altitude.
- (постоянного) перепада давлений — differential pressure regulator
- постоянства давления (наддува пд) — automatic manifold pressure regulator
- постоянства оборотов — constant-speed governor
- предельной температуры газов за турбиной — exhaust gas temperature (еgт) regulator
- предельных оборотов (в топливном насосе-регуляторе) — maximum speed governor
регулятор управляет командным давлением для ограничения максимальных оборотов квд двигателя. — the msg in the hp pump controls servo pressure to limit engine speed to a maximum of... n2.
- предельных режимов (рпр, двиг.) — (engine) limit governor
- привода постоянных оборотов (рппо) — constant speed drive governor
- пропорционального расхода (топпива) — proportional (fuel) flow regulater
- рамы — gimbal vertical controller
предназначен для вертикальной стабилизации следящей рамы курсовертикали.
- расхода (жидкости или газа) — flow regulator
- расхода (воздуха системы кондиционирования) — (air) flow rate control
- расхода топлива — fuel flow regulator (ffr)
- расхода топлива (узел дозирующей иглы насоса-регулятора) — throttle (valve) unit
- режимов двигателя, электронный (эррд) — electronic engine power governor (eepg)
- сброса давления (топлива форсажной камеры) — fuel pressure drop regulator
- скорости изменения давления (воздуха системы герметизации кабин) — air pressure rate control /regulator/
- смеси (пд) — mixture control
mixture control lever settings: "full rich", "auto rich", "auto lean", "idle cut-off".
- сопла и форсажа или форсажного контура (рсф) — exhaust nozzle and augmentor control
- степени повышения давления (гтд) — pressure ratio control unit
управляет створками реактивного сопла по сигналам рз и р6.
- температуры, автоматический (автомат регулирования температуры воздуха в системе кондиционирования) — automatic temperature control
- температуры, всережимный предельный (впрт) — all-power exhaust gas temperature regulator
- температуры воздуха в кабине — cabin temperature control /regulator/
- температуры выходящих газов — exhaust gas temperature regulator, egt regulator
- температуры газов за турбиной — exhaust gas temperature (egt) regulator
- температуры, предельный (двигателя) — top temperature regulator
- температуры топлива (топливомасляный агрегат) — fuel temperature regulator
топливомасляный агрегат работает в качестве регулятора температуры масла двигателя. — the fuel-oil heat exchanger functions as fuel temperature regulator.
- топлива (топливный) — fuel flow regulator (ffr), fuel control unit (fcu)
pt обеспечивает потребный расход и давление подаваемого к форсункам топлива на вcex режимах работы двигателя. — the fcu function is to regulate the correct fuel flows and pressures for all engine operating conditions.
-, управляемый вручную (принудительно) — manual regulator
- усиления, автоматический (ару) — automatic gain control (agc)
цепь для выдерживания постоянного уровня выходного сигнала приемника независимо от изменения уровня входного сигнала. — а type of circuit used to maintain the output volume of а receiver constant, regardless of variations in the signal strength applied to the receiver.
- форсажного топлива — afterburner fuel control unit
-, центробежный (оборотов) — centrifugal governor
- часов — clock regulator
для замедления или ускорения хода часов. position. — the clock regulator may be set in slow (s) or fast (f)
- частоты вращения — speed governor
- частоты вращения, центробежный — centrifugal speed governor
- числа оборотов — speed governor
- числа оборотов ротора вд — hp rotor (shaft) speed governor
- яркости — light intensity control
- яркости (устройства уви системы омега) — dimmer control (dim). allows illumination intensity of displays.Русско-английский сборник авиационно-технических терминов > регулятор
-
9 производящий
adj. productive, producing, generating, reproducing; производящий оператор, generator; производящая функция, generating function, course-of-value function( logic); производящее ядро, reproducing kernelРусско-английский словарь математических терминов > производящий
-
10 составлять
•The three instruments form (or comprise, or represent) a signal generator assembly.
•Fourteen die castings make up (or constitute) the principal components of...
•These particles compose the hazes observed on Jupiter.
•These three bonds comprise the triple bond.
II•A mean sidereal day comprises 23 hr 56 min and 4 sec.
•The apprentices' full term of training covers five years.
•The canyon forms 5 percent of the satellite's surface.
•The average planetoid diameter would run close to a mile.
•Nitrogen, oxygen and argon together account for 99.97% of...
•The cost of cooling towers may amount to 50% of the total cost of...
•The value of this merchandise comes to only 10.4% of the total.
•Argon constitutes (or makes up) almost 1% of the air.
•The housing measures 12 in. in length.
•The kinetic energies range from zero (up) to 3.5 MeV.
•The build-up at edges may run as high as 0.05 in.
•The investments total 10 mln dollars.
•In man the adrenals comprise 0.0002% of the body weight.
•In many such materials the clay-size grade and clay-mineral fractions comprise less than 50% of the total rock.
•The figure represents about 27% of the gross national product.
•The world's supply of californium is in the range of millionths of a gram.
•Electrons contribute (or constitute) the bulk of ordinary matter.
•The computer generates production reports.
IV•We formulate (or make up) special compositions for ceramic bodies.
•These errors may be allowed for by making up a calibration card for the instrument.
•When drawing up a drill nomenclature...
•A design diagram may be prepared by plotting...
•To compile a map, a dictionary, a report...
Русско-английский научно-технический словарь переводчика > составлять
-
11 когда
•The fuel material is cooled as (or while, or when) it passes down through the steam generator.
•Once these operating requirements have been established, the engineer should consult a porcelain enameller.
•Where really large moulds are to be produced, a vertical band saw can be used advantageously.
* * *Когда -- when, where; once (как только); as (по мере того как; если); at the time, while (в то время, когда)Where fatigue is a consideration, peak stresses will have to be compared with allowable values.Once the vapor reaches the atmosphere, however, it condenses on solid particles.As hydrogen content is reduced below the currently typical value of 14 percent, there is a pronounced increase in linear temperatures.At the time it started its cost reduction program, the company was in financial difficulty.Do not attempt to dismantle the decanter while the drum is rotating.Русско-английский научно-технический словарь переводчика > когда
-
12 совершенно не нужен
Совершенно не нужен-- Bypass air is of no value in the gas generator cycle to supply a free power turbine.Русско-английский научно-технический словарь переводчика > совершенно не нужен
-
13 производящий
adj. productive, producing, generating, reproducing;
производящий оператор - generator;
производящая функция - generating function, course-of-value function ( logic)
производящее ядро - reproducing kernel -
14 последовательный
1. cascade2. logical3. runningтекущие дни; последовательные календарные дни — running days
4. logically5. successsive6. in a consistent manner7. point by pointпостепенный; последовательный — point by point
8. step-by-step9. succcessive10. consecutive11. consecutively12. consistently13. in series14. in successionподряд, один за другим, последовательно — in succession
15. sequential16. sequentially17. series18. successional19. successively20. consistent; successive21. consequent22. gradual23. serialРусско-английский большой базовый словарь > последовательный
-
15 удельная мощность
1. power-weight ratio2. specific capacity3. specific outputмаксимальная мощность; конечная продукция — ultimate output
4. unit capacityрезервная мощность; неиспользуемая мощность — idle capacity
Русско-английский большой базовый словарь > удельная мощность
-
16 температура (темп.)
temperature (temp.)
-, абсолютная — absolute temperature
temperature value relative to absolute zero.
- атмосферного воздуха — free-air temperature
- аэродинамического нагрева — aerodynamic heat temperature
- в верхних слоях атмосферы — upper air temperature
- воздуха в трубопроводе (сист. кондиционирования) — duct (air) temperature
- воздуха на входе в двигатель — engine air inlet temperature, ram air temperature (rat)
- воздуха на входе в карбюратор — carburetor air (inlet) temperature
- воздуха перед карбюратором — carburetor air inlet temperature
- воспламенения — ignition temperature
минимальная температура, потребная для воспламенения или поддерживания горения вещества (топлива), — the minimum temperature required to ignite or cause self-sustained combustion of a substance.
- вспышки — flashpoint
температура, при которой образуются пары топлива или масла, мгновенно воспламеняющиеся при зажигании. — the temperature at which а substance, as fuel, oil will give off а vapor that will flash or burn momentarily when ignited.
- входящего масла (в двиг.) — oil inlet temperature (oil-in temp)
- выходящего масла (из двиг.) — oil outlet temperature (oil-out temp)
- выходящих газов (за турбиной) (твг) — exhaust gas temperature (egt), turbine gas temperature (tgt)
замер твг производится термопарой, установленной в реактивном сопле. — egt measurement uses the average signal from thermocouple-type probes located in the turbine exhaust.
- выходящих газов (твг-т4 без учета промежуточных температур перед и за турбинами вд и нд) — egt/tgt/ (т4)
- выходящих газов (твг-t7 с учетом промежуточных температур газов перед и за турбинами вд и нд) — egt/tgt/ (т7)
- выходящих газов, опасная (выше нормы) — exhaust gas overtemperature (еg ovtmp)
- выходящих газов, приведенная к мса — exhaust gas temperature (given) in l.s.a., egt based on isa conditions
- газов за турбиной — exhaust gas temperature (egt), turbine gas temperature (tgt)
немедленно прекращать запуск при забросе твг. — discontinue the start immediately after an indication of egt rise.
- газов за турбиной вд (т5) — hp turbine (exhaust) gas temperature (т5)
- газов за турбиной нд (т6) — lp turbine (exhaust) gas temperature (т6)
- газов за турбиной (в удлинительной трубе) — jet pipe temperature (jpt)
- газов за турбиной по прибору, максимальная — maximum observed egt
- газов на входе в турбину — turbine inlet temperature, turbine entry temperature (tet)
приборы силовой установки включают указатели оборотов (газогенератора) и температуры газов на входе в турбину. — engine indicating consists of the gas generator rpm indigating system and power turbine inlet temperature indicating system.
- газов на выходе из турбины — exhaust gas temperature (egt)
- газов перед турбиной — turbine inlet temperature
- газов перед турбиной вд (с учетом промежуточных температур газов перед и за турбинами вд и нд) (т4) — hp turbine inlet temperature (т4)
- головок цилиндров — cylinder head temperature (cyl. hd temp, cut)
- горения — combustion temperature
- дня — day temperature
-, заданная (выставляемая) — selected temperature
-, заданая (по усповию) — pre-determined temperature
- замерзания — treezing point
- заторможенного потока — stagnation temperature
-, заявленная — declared temperature
-, комнатная — normal raom temperature
- масла — oil temperature
- масла, минимально-допустимая для запуска (дв.) на земле и в воздухе — minimum oil temperature for starting and relighting
- масла, минимально-допустимая для дачи газа — minimum oil temperature before advancing the throttle
- масла на входе в двигатель — (engine) oil inlet temperature (oil-in temp)
- масла на выходе из двигателя — (engine) oil outlet temperature (oil-out temp)
- масла, низкая (недостаточная) — oil undertemperature
табло "мала темп. масла" загорается при падении темп. масла более чем на 10 ос ниже допустимой средней величины. — the oil under temp light comes on when oil temperature more than 10о c below average.
-, местная — local temperature
-, минусовая — subzero temperature
engine start after prolonged cold soak periods at subzero temperatures.
- на аэродроме — aerodrome temperature
- на аэродроме (на графике) — air temperature
- набегающего потока — ram air temperature (rat)
- (воздуха) на входе в двигатель — engine air inlet temperature
- на выходе из компрессора — compressor delivery temperature
- наружного воздуха ( hb) — outside/ambient, free ram/ air temperature (0.a.t., oat), free air static temperature
- на уровне моря — sea-level temperature
- невозмущенного потока (воздуха) — static air temperature
- окружающего воздуха — ambient (air) temperature
включить пос при наличии мокрого снега при т. окружающего воздуха ниже +10 ос — turn engine anti-ice on if wet snow is present with ambient air temperature below +10 ос.
- окружающего воздуха (на графике) — air temperature
- окружающей среды — ambient temperature
-, опасная — overtemperature (ovtmp)
- от -40 до (+) 50 ос — temperature (range) from to +50 ос
- относительно мса (на графике) — (incremental) temperature above and below isa, temperature deviation from isa
- пайки — soldering temperature
-, повышенная — elevated temperature
- пограничного слоя — boundary layer temperature
-, полная (торможения потока) — total air temperature (tat)
температура высокоскоростного потока воздуха, адиабатически заторможенного до нулевой скорости на передней кромке азродинамического профиля. — the "ram" temperature ereated on the leading edges of an aircraft traveling through the atmosphere. refers to the complete standstill of air molecules on the leading edgas of the aircraft.
- полного торможения (воздушного потока) — stagnation /total/ tamperature
-, постоянная — constant temperatufa
-, предполагаемая в эксплуатации — temperature expected in service
-, равновесная — equilibrium temperature
- самовоспламенемия — autoignition temperature
expected autoignition temperatura of the fuel in the tanks.
- сгорания — combustion temperature
-, стандартная — standard temperature
-, статическая — static temperature
- топлива — fuel temperature
- топлива, низкая (недостаточная) — fuel undertemperature
табло "мала темп. топлива" загорается при cниженин. — the fuel under temp light comes on during descent.
- торможения (воздушного потока) — stagnation /total/ temperature
- тормоза (колеса) — brake temperature
brake temp (amber) annunciator is lit when brakes are overheating
- точки росы — dewpoint (temperature)
температура, до которой необходимо охладить воздух или др. газ, чтобы содержащийся в нем водяной пар достиг состояния насыщения. — the temperature to which a given parcel of air must be cooled at constant pressure and constant water vapor content in order for saturation to occur.
высока т. в воздухопроводе (табло системы отбора воздуха от двигателя) — (air) duct ovht engine bleed air dueting is overheated.
высока т. воздуха (охлаждения) турбины (дв. n i) (табло) — turb air ovht (eng i) engine turbine cooling air is overheated (overtemperature).
высока т. газов турбины (табло) — overtemp tgt turbine gas temperature (tgt) is over temperature.
высока т. масла в... — (too) high temperature of oil in..., high oil temperature in...
высока т. масла 1-ro двигателя (табло) — (eng) i oil over temp, oil ovtemp, oil ovht indicates excessive oil temperature.
"высока т. раб. жидкости (в гидробаке)" (табло) — rsvr hi temp (light)
высока т. топлива 1-го двигателя (табло) — (eng) i fuel over temp
заброс т. — sudden rise in temperature
мала т. масла в... — (too) low temperature of oil in...,low oil temperature in...
мала т. масла 1-го двигателя (табло) — (eng) i oil under temp
мала т. топлива 1-го двигателя (табло) — (eng) 1 fuel under temp
(длительный) период воздействия низких температур падение т. на 1 км изменения высоты — (prolonged) cold soak period (at subzero temperature) temperature lapse rate of... ос per kilometre of altitude (height) increase
повышение т. — temperature rise
прирост т. — temperature increase
при т.... ос — at a temperature of... оc
защищать от воздействия высоких температур — protect (smth) from extreme /high/ temperaturesРусско-английский сборник авиационно-технических терминов > температура (темп.)
-
17 производящий
adj.productive, producing, generating, reproducingпроизводящая функция — generating function, course-of-value function (logic)
-
18 модульный центр обработки данных (ЦОД)
модульный центр обработки данных (ЦОД)
-
[Интент]Параллельные тексты EN-RU
[ http://dcnt.ru/?p=9299#more-9299]
Data Centers are a hot topic these days. No matter where you look, this once obscure aspect of infrastructure is getting a lot of attention. For years, there have been cost pressures on IT operations and this, when the need for modern capacity is greater than ever, has thrust data centers into the spotlight. Server and rack density continues to rise, placing DC professionals and businesses in tighter and tougher situations while they struggle to manage their IT environments. And now hyper-scale cloud infrastructure is taking traditional technologies to limits never explored before and focusing the imagination of the IT industry on new possibilities.
В настоящее время центры обработки данных являются широко обсуждаемой темой. Куда ни посмотришь, этот некогда малоизвестный аспект инфраструктуры привлекает все больше внимания. Годами ИТ-отделы испытывали нехватку средств и это выдвинуло ЦОДы в центр внимания, в то время, когда необходимость в современных ЦОДах стала как никогда высокой. Плотность серверов и стоек продолжают расти, все больше усложняя ситуацию для специалистов в области охлаждения и организаций в их попытках управлять своими ИТ-средами. И теперь гипермасштабируемая облачная инфраструктура подвергает традиционные технологии невиданным ранее нагрузкам, и заставляет ИТ-индустрию искать новые возможности.
At Microsoft, we have focused a lot of thought and research around how to best operate and maintain our global infrastructure and we want to share those learnings. While obviously there are some aspects that we keep to ourselves, we have shared how we operate facilities daily, our technologies and methodologies, and, most importantly, how we monitor and manage our facilities. Whether it’s speaking at industry events, inviting customers to our “Microsoft data center conferences” held in our data centers, or through other media like blogging and white papers, we believe sharing best practices is paramount and will drive the industry forward. So in that vein, we have some interesting news to share.
В компании MicroSoft уделяют большое внимание изучению наилучших методов эксплуатации и технического обслуживания своей глобальной инфраструктуры и делятся результатами своих исследований. И хотя мы, конечно, не раскрываем некоторые аспекты своих исследований, мы делимся повседневным опытом эксплуатации дата-центров, своими технологиями и методологиями и, что важнее всего, методами контроля и управления своими объектами. Будь то доклады на отраслевых событиях, приглашение клиентов на наши конференции, которые посвящены центрам обработки данных MicroSoft, и проводятся в этих самых дата-центрах, или использование других средств, например, блоги и спецификации, мы уверены, что обмен передовым опытом имеет первостепенное значение и будет продвигать отрасль вперед.
Today we are sharing our Generation 4 Modular Data Center plan. This is our vision and will be the foundation of our cloud data center infrastructure in the next five years. We believe it is one of the most revolutionary changes to happen to data centers in the last 30 years. Joining me, in writing this blog are Daniel Costello, my director of Data Center Research and Engineering and Christian Belady, principal power and cooling architect. I feel their voices will add significant value to driving understanding around the many benefits included in this new design paradigm.
Сейчас мы хотим поделиться своим планом модульного дата-центра четвертого поколения. Это наше видение и оно будет основанием для инфраструктуры наших облачных дата-центров в ближайшие пять лет. Мы считаем, что это одно из самых революционных изменений в дата-центрах за последние 30 лет. Вместе со мной в написании этого блога участвовали Дэниел Костелло, директор по исследованиям и инжинирингу дата-центров, и Кристиан Белади, главный архитектор систем энергоснабжения и охлаждения. Мне кажется, что их авторитет придаст больше веса большому количеству преимуществ, включенных в эту новую парадигму проектирования.
Our “Gen 4” modular data centers will take the flexibility of containerized servers—like those in our Chicago data center—and apply it across the entire facility. So what do we mean by modular? Think of it like “building blocks”, where the data center will be composed of modular units of prefabricated mechanical, electrical, security components, etc., in addition to containerized servers.
Was there a key driver for the Generation 4 Data Center?Наши модульные дата-центры “Gen 4” будут гибкими с контейнерами серверов – как серверы в нашем чикагском дата-центре. И гибкость будет применяться ко всему ЦОД. Итак, что мы подразумеваем под модульностью? Мы думаем о ней как о “строительных блоках”, где дата-центр будет состоять из модульных блоков изготовленных в заводских условиях электрических систем и систем охлаждения, а также систем безопасности и т.п., в дополнение к контейнеризованным серверам.
Был ли ключевой стимул для разработки дата-центра четвертого поколения?
If we were to summarize the promise of our Gen 4 design into a single sentence it would be something like this: “A highly modular, scalable, efficient, just-in-time data center capacity program that can be delivered anywhere in the world very quickly and cheaply, while allowing for continued growth as required.” Sounds too good to be true, doesn’t it? Well, keep in mind that these concepts have been in initial development and prototyping for over a year and are based on cumulative knowledge of previous facility generations and the advances we have made since we began our investments in earnest on this new design.Если бы нам нужно было обобщить достоинства нашего проекта Gen 4 в одном предложении, это выглядело бы следующим образом: “Центр обработки данных с высоким уровнем модульности, расширяемости, и энергетической эффективности, а также возможностью постоянного расширения, в случае необходимости, который можно очень быстро и дешево развертывать в любом месте мира”. Звучит слишком хорошо для того чтобы быть правдой, не так ли? Ну, не забывайте, что эти концепции находились в процессе начальной разработки и создания опытного образца в течение более одного года и основываются на опыте, накопленном в ходе развития предыдущих поколений ЦОД, а также успехах, сделанных нами со времени, когда мы начали вкладывать серьезные средства в этот новый проект.
One of the biggest challenges we’ve had at Microsoft is something Mike likes to call the ‘Goldilock’s Problem’. In a nutshell, the problem can be stated as:
The worst thing we can do in delivering facilities for the business is not have enough capacity online, thus limiting the growth of our products and services.Одну из самых больших проблем, с которыми приходилось сталкиваться Майкрософт, Майк любит называть ‘Проблемой Лютика’. Вкратце, эту проблему можно выразить следующим образом:
Самое худшее, что может быть при строительстве ЦОД для бизнеса, это не располагать достаточными производственными мощностями, и тем самым ограничивать рост наших продуктов и сервисов.The second worst thing we can do in delivering facilities for the business is to have too much capacity online.
А вторым самым худшим моментом в этой сфере может слишком большое количество производственных мощностей.
This has led to a focus on smart, intelligent growth for the business — refining our overall demand picture. It can’t be too hot. It can’t be too cold. It has to be ‘Just Right!’ The capital dollars of investment are too large to make without long term planning. As we struggled to master these interesting challenges, we had to ensure that our technological plan also included solutions for the business and operational challenges we faced as well.
So let’s take a high level look at our Generation 4 designЭто заставило нас сосредоточиваться на интеллектуальном росте для бизнеса — refining our overall demand picture. Это не должно быть слишком горячим. И это не должно быть слишком холодным. Это должно быть ‘как раз, таким как надо!’ Нельзя делать такие большие капиталовложения без долгосрочного планирования. Пока мы старались решить эти интересные проблемы, мы должны были гарантировать, что наш технологический план будет также включать решения для коммерческих и эксплуатационных проблем, с которыми нам также приходилось сталкиваться.
Давайте рассмотрим наш проект дата-центра четвертого поколенияAre you ready for some great visuals? Check out this video at Soapbox. Click here for the Microsoft 4th Gen Video.
It’s a concept video that came out of my Data Center Research and Engineering team, under Daniel Costello, that will give you a view into what we think is the future.
From a configuration, construct-ability and time to market perspective, our primary goals and objectives are to modularize the whole data center. Not just the server side (like the Chicago facility), but the mechanical and electrical space as well. This means using the same kind of parts in pre-manufactured modules, the ability to use containers, skids, or rack-based deployments and the ability to tailor the Redundancy and Reliability requirements to the application at a very specific level.
Посмотрите это видео, перейдите по ссылке для просмотра видео о Microsoft 4th Gen:
Это концептуальное видео, созданное командой отдела Data Center Research and Engineering, возглавляемого Дэниелом Костелло, которое даст вам наше представление о будущем.
С точки зрения конфигурации, строительной технологичности и времени вывода на рынок, нашими главными целями и задачами агрегатирование всего дата-центра. Не только серверную часть, как дата-центр в Чикаго, но также системы охлаждения и электрические системы. Это означает применение деталей одного типа в сборных модулях, возможность использования контейнеров, салазок, или стоечных систем, а также возможность подстраивать требования избыточности и надежности для данного приложения на очень специфичном уровне.Our goals from a cost perspective were simple in concept but tough to deliver. First and foremost, we had to reduce the capital cost per critical Mega Watt by the class of use. Some applications can run with N-level redundancy in the infrastructure, others require a little more infrastructure for support. These different classes of infrastructure requirements meant that optimizing for all cost classes was paramount. At Microsoft, we are not a one trick pony and have many Online products and services (240+) that require different levels of operational support. We understand that and ensured that we addressed it in our design which will allow us to reduce capital costs by 20%-40% or greater depending upon class.
Нашими целями в области затрат были концептуально простыми, но трудно реализуемыми. В первую очередь мы должны были снизить капитальные затраты в пересчете на один мегаватт, в зависимости от класса резервирования. Некоторые приложения могут вполне работать на базе инфраструктуры с резервированием на уровне N, то есть без резервирования, а для работы других приложений требуется больше инфраструктуры. Эти разные классы требований инфраструктуры подразумевали, что оптимизация всех классов затрат имеет преобладающее значение. В Майкрософт мы не ограничиваемся одним решением и располагаем большим количеством интерактивных продуктов и сервисов (240+), которым требуются разные уровни эксплуатационной поддержки. Мы понимаем это, и учитываем это в своем проекте, который позволит нам сокращать капитальные затраты на 20%-40% или более в зависимости от класса.For example, non-critical or geo redundant applications have low hardware reliability requirements on a location basis. As a result, Gen 4 can be configured to provide stripped down, low-cost infrastructure with little or no redundancy and/or temperature control. Let’s say an Online service team decides that due to the dramatically lower cost, they will simply use uncontrolled outside air with temperatures ranging 10-35 C and 20-80% RH. The reality is we are already spec-ing this for all of our servers today and working with server vendors to broaden that range even further as Gen 4 becomes a reality. For this class of infrastructure, we eliminate generators, chillers, UPSs, and possibly lower costs relative to traditional infrastructure.
Например, некритичные или гео-избыточные системы имеют низкие требования к аппаратной надежности на основе местоположения. В результате этого, Gen 4 можно конфигурировать для упрощенной, недорогой инфраструктуры с низким уровнем (или вообще без резервирования) резервирования и / или температурного контроля. Скажем, команда интерактивного сервиса решает, что, в связи с намного меньшими затратами, они будут просто использовать некондиционированный наружный воздух с температурой 10-35°C и влажностью 20-80% RH. В реальности мы уже сегодня предъявляем эти требования к своим серверам и работаем с поставщиками серверов над еще большим расширением диапазона температур, так как наш модуль и подход Gen 4 становится реальностью. Для подобного класса инфраструктуры мы удаляем генераторы, чиллеры, ИБП, и, возможно, будем предлагать более низкие затраты, по сравнению с традиционной инфраструктурой.
Applications that demand higher level of redundancy or temperature control will use configurations of Gen 4 to meet those needs, however, they will also cost more (but still less than traditional data centers). We see this cost difference driving engineering behavioral change in that we predict more applications will drive towards Geo redundancy to lower costs.
Системы, которым требуется более высокий уровень резервирования или температурного контроля, будут использовать конфигурации Gen 4, отвечающие этим требованиям, однако, они будут также стоить больше. Но все равно они будут стоить меньше, чем традиционные дата-центры. Мы предвидим, что эти различия в затратах будут вызывать изменения в методах инжиниринга, и по нашим прогнозам, это будет выражаться в переходе все большего числа систем на гео-избыточность и меньшие затраты.
Another cool thing about Gen 4 is that it allows us to deploy capacity when our demand dictates it. Once finalized, we will no longer need to make large upfront investments. Imagine driving capital costs more closely in-line with actual demand, thus greatly reducing time-to-market and adding the capacity Online inherent in the design. Also reduced is the amount of construction labor required to put these “building blocks” together. Since the entire platform requires pre-manufacture of its core components, on-site construction costs are lowered. This allows us to maximize our return on invested capital.
Еще одно достоинство Gen 4 состоит в том, что он позволяет нам разворачивать дополнительные мощности, когда нам это необходимо. Как только мы закончим проект, нам больше не нужно будет делать большие начальные капиталовложения. Представьте себе возможность более точного согласования капитальных затрат с реальными требованиями, и тем самым значительного снижения времени вывода на рынок и интерактивного добавления мощностей, предусматриваемого проектом. Также снижен объем строительных работ, требуемых для сборки этих “строительных блоков”. Поскольку вся платформа требует предварительного изготовления ее базовых компонентов, затраты на сборку также снижены. Это позволит нам увеличить до максимума окупаемость своих капиталовложений.
Мы все подвергаем сомнениюIn our design process, we questioned everything. You may notice there is no roof and some might be uncomfortable with this. We explored the need of one and throughout our research we got some surprising (positive) results that showed one wasn’t needed.
В своем процессе проектирования мы все подвергаем сомнению. Вы, наверное, обратили внимание на отсутствие крыши, и некоторым специалистам это могло не понравиться. Мы изучили необходимость в крыше и в ходе своих исследований получили удивительные результаты, которые показали, что крыша не нужна.
Серийное производство дата центров
In short, we are striving to bring Henry Ford’s Model T factory to the data center. http://en.wikipedia.org/wiki/Henry_Ford#Model_T. Gen 4 will move data centers from a custom design and build model to a commoditized manufacturing approach. We intend to have our components built in factories and then assemble them in one location (the data center site) very quickly. Think about how a computer, car or plane is built today. Components are manufactured by different companies all over the world to a predefined spec and then integrated in one location based on demands and feature requirements. And just like Henry Ford’s assembly line drove the cost of building and the time-to-market down dramatically for the automobile industry, we expect Gen 4 to do the same for data centers. Everything will be pre-manufactured and assembled on the pad.Мы хотим применить модель автомобильной фабрики Генри Форда к дата-центру. Проект Gen 4 будет способствовать переходу от модели специализированного проектирования и строительства к товарно-производственному, серийному подходу. Мы намерены изготавливать свои компоненты на заводах, а затем очень быстро собирать их в одном месте, в месте строительства дата-центра. Подумайте о том, как сегодня изготавливается компьютер, автомобиль или самолет. Компоненты изготавливаются по заранее определенным спецификациям разными компаниями во всем мире, затем собираются в одном месте на основе спроса и требуемых характеристик. И точно так же как сборочный конвейер Генри Форда привел к значительному уменьшению затрат на производство и времени вывода на рынок в автомобильной промышленности, мы надеемся, что Gen 4 сделает то же самое для дата-центров. Все будет предварительно изготавливаться и собираться на месте.
Невероятно энергоэффективный ЦОД
And did we mention that this platform will be, overall, incredibly energy efficient? From a total energy perspective not only will we have remarkable PUE values, but the total cost of energy going into the facility will be greatly reduced as well. How much energy goes into making concrete? Will we need as much of it? How much energy goes into the fuel of the construction vehicles? This will also be greatly reduced! A key driver is our goal to achieve an average PUE at or below 1.125 by 2012 across our data centers. More than that, we are on a mission to reduce the overall amount of copper and water used in these facilities. We believe these will be the next areas of industry attention when and if the energy problem is solved. So we are asking today…“how can we build a data center with less building”?А мы упоминали, что эта платформа будет, в общем, невероятно энергоэффективной? С точки зрения общей энергии, мы получим не только поразительные значения PUE, но общая стоимость энергии, затраченной на объект будет также значительно снижена. Сколько энергии идет на производство бетона? Нам нужно будет столько энергии? Сколько энергии идет на питание инженерных строительных машин? Это тоже будет значительно снижено! Главным стимулом является достижение среднего PUE не больше 1.125 для всех наших дата-центров к 2012 году. Более того, у нас есть задача сокращения общего количества меди и воды в дата-центрах. Мы думаем, что эти задачи станут следующей заботой отрасли после того как будет решена энергетическая проблема. Итак, сегодня мы спрашиваем себя…“как можно построить дата-центр с меньшим объемом строительных работ”?
Строительство дата центров без чиллеровWe have talked openly and publicly about building chiller-less data centers and running our facilities using aggressive outside economization. Our sincerest hope is that Gen 4 will completely eliminate the use of water. Today’s data centers use massive amounts of water and we see water as the next scarce resource and have decided to take a proactive stance on making water conservation part of our plan.
Мы открыто и публично говорили о строительстве дата-центров без чиллеров и активном использовании в наших центрах обработки данных технологий свободного охлаждения или фрикулинга. Мы искренне надеемся, что Gen 4 позволит полностью отказаться от использования воды. Современные дата-центры расходуют большие объемы воды и так как мы считаем воду следующим редким ресурсом, мы решили принять упреждающие меры и включить экономию воды в свой план.
By sharing this with the industry, we believe everyone can benefit from our methodology. While this concept and approach may be intimidating (or downright frightening) to some in the industry, disclosure ultimately is better for all of us.
Делясь этим опытом с отраслью, мы считаем, что каждый сможет извлечь выгоду из нашей методологией. Хотя эта концепция и подход могут показаться пугающими (или откровенно страшными) для некоторых отраслевых специалистов, раскрывая свои планы мы, в конечном счете, делаем лучше для всех нас.
Gen 4 design (even more than just containers), could reduce the ‘religious’ debates in our industry. With the central spine infrastructure in place, containers or pre-manufactured server halls can be either AC or DC, air-side economized or water-side economized, or not economized at all (though the sanity of that might be questioned). Gen 4 will allow us to decommission, repair and upgrade quickly because everything is modular. No longer will we be governed by the initial decisions made when constructing the facility. We will have almost unlimited use and re-use of the facility and site. We will also be able to use power in an ultra-fluid fashion moving load from critical to non-critical as use and capacity requirements dictate.
Проект Gen 4 позволит уменьшить ‘религиозные’ споры в нашей отрасли. Располагая базовой инфраструктурой, контейнеры или сборные серверные могут оборудоваться системами переменного или постоянного тока, воздушными или водяными экономайзерами, или вообще не использовать экономайзеры. Хотя можно подвергать сомнению разумность такого решения. Gen 4 позволит нам быстро выполнять работы по выводу из эксплуатации, ремонту и модернизации, поскольку все будет модульным. Мы больше не будем руководствоваться начальными решениями, принятыми во время строительства дата-центра. Мы сможем использовать этот дата-центр и инфраструктуру в течение почти неограниченного периода времени. Мы также сможем применять сверхгибкие методы использования электрической энергии, переводя оборудование в режимы критической или некритической нагрузки в соответствии с требуемой мощностью.
Gen 4 – это стандартная платформаFinally, we believe this is a big game changer. Gen 4 will provide a standard platform that our industry can innovate around. For example, all modules in our Gen 4 will have common interfaces clearly defined by our specs and any vendor that meets these specifications will be able to plug into our infrastructure. Whether you are a computer vendor, UPS vendor, generator vendor, etc., you will be able to plug and play into our infrastructure. This means we can also source anyone, anywhere on the globe to minimize costs and maximize performance. We want to help motivate the industry to further innovate—with innovations from which everyone can reap the benefits.
Наконец, мы уверены, что это будет фактором, который значительно изменит ситуацию. Gen 4 будет представлять собой стандартную платформу, которую отрасль сможет обновлять. Например, все модули в нашем Gen 4 будут иметь общепринятые интерфейсы, четко определяемые нашими спецификациями, и оборудование любого поставщика, которое отвечает этим спецификациям можно будет включать в нашу инфраструктуру. Независимо от того производите вы компьютеры, ИБП, генераторы и т.п., вы сможете включать свое оборудование нашу инфраструктуру. Это означает, что мы также сможем обеспечивать всех, в любом месте земного шара, тем самым сводя до минимума затраты и максимальной увеличивая производительность. Мы хотим создать в отрасли мотивацию для дальнейших инноваций – инноваций, от которых каждый сможет получать выгоду.
Главные характеристики дата-центров четвертого поколения Gen4To summarize, the key characteristics of our Generation 4 data centers are:
Scalable
Plug-and-play spine infrastructure
Factory pre-assembled: Pre-Assembled Containers (PACs) & Pre-Manufactured Buildings (PMBs)
Rapid deployment
De-mountable
Reduce TTM
Reduced construction
Sustainable measuresНиже приведены главные характеристики дата-центров четвертого поколения Gen 4:
Расширяемость;
Готовая к использованию базовая инфраструктура;
Изготовление в заводских условиях: сборные контейнеры (PAC) и сборные здания (PMB);
Быстрота развертывания;
Возможность демонтажа;
Снижение времени вывода на рынок (TTM);
Сокращение сроков строительства;
Экологичность;Map applications to DC Class
We hope you join us on this incredible journey of change and innovation!
Long hours of research and engineering time are invested into this process. There are still some long days and nights ahead, but the vision is clear. Rest assured however, that we as refine Generation 4, the team will soon be looking to Generation 5 (even if it is a bit farther out). There is always room to get better.
Использование систем электропитания постоянного тока.
Мы надеемся, что вы присоединитесь к нам в этом невероятном путешествии по миру изменений и инноваций!
На этот проект уже потрачены долгие часы исследований и проектирования. И еще предстоит потратить много дней и ночей, но мы имеем четкое представление о конечной цели. Однако будьте уверены, что как только мы доведем до конца проект модульного дата-центра четвертого поколения, мы вскоре начнем думать о проекте дата-центра пятого поколения. Всегда есть возможность для улучшений.So if you happen to come across Goldilocks in the forest, and you are curious as to why she is smiling you will know that she feels very good about getting very close to ‘JUST RIGHT’.
Generations of Evolution – some background on our data center designsТак что, если вы встретите в лесу девочку по имени Лютик, и вам станет любопытно, почему она улыбается, вы будете знать, что она очень довольна тем, что очень близко подошла к ‘ОПИМАЛЬНОМУ РЕШЕНИЮ’.
Поколения эволюции – история развития наших дата-центровWe thought you might be interested in understanding what happened in the first three generations of our data center designs. When Ray Ozzie wrote his Software plus Services memo it posed a very interesting challenge to us. The winds of change were at ‘tornado’ proportions. That “plus Services” tag had some significant (and unstated) challenges inherent to it. The first was that Microsoft was going to evolve even further into an operations company. While we had been running large scale Internet services since 1995, this development lead us to an entirely new level. Additionally, these “services” would span across both Internet and Enterprise businesses. To those of you who have to operate “stuff”, you know that these are two very different worlds in operational models and challenges. It also meant that, to achieve the same level of reliability and performance required our infrastructure was going to have to scale globally and in a significant way.
Мы подумали, что может быть вам будет интересно узнать историю первых трех поколений наших центров обработки данных. Когда Рэй Оззи написал свою памятную записку Software plus Services, он поставил перед нами очень интересную задачу. Ветра перемен двигались с ураганной скоростью. Это окончание “plus Services” скрывало в себе какие-то значительные и неопределенные задачи. Первая заключалась в том, что Майкрософт собиралась в еще большей степени стать операционной компанией. Несмотря на то, что мы управляли большими интернет-сервисами, начиная с 1995 г., эта разработка подняла нас на абсолютно новый уровень. Кроме того, эти “сервисы” охватывали интернет-компании и корпорации. Тем, кому приходится всем этим управлять, известно, что есть два очень разных мира в области операционных моделей и задач. Это также означало, что для достижения такого же уровня надежности и производительности требовалось, чтобы наша инфраструктура располагала значительными возможностями расширения в глобальных масштабах.
It was that intense atmosphere of change that we first started re-evaluating data center technology and processes in general and our ideas began to reach farther than what was accepted by the industry at large. This was the era of Generation 1. As we look at where most of the world’s data centers are today (and where our facilities were), it represented all the known learning and design requirements that had been in place since IBM built the first purpose-built computer room. These facilities focused more around uptime, reliability and redundancy. Big infrastructure was held accountable to solve all potential environmental shortfalls. This is where the majority of infrastructure in the industry still is today.
Именно в этой атмосфере серьезных изменений мы впервые начали переоценку ЦОД-технологий и технологий вообще, и наши идеи начали выходить за пределы общепринятых в отрасли представлений. Это была эпоха ЦОД первого поколения. Когда мы узнали, где сегодня располагается большинство мировых дата-центров и где находятся наши предприятия, это представляло весь опыт и навыки проектирования, накопленные со времени, когда IBM построила первую серверную. В этих ЦОД больше внимания уделялось бесперебойной работе, надежности и резервированию. Большая инфраструктура была призвана решать все потенциальные экологические проблемы. Сегодня большая часть инфраструктуры все еще находится на этом этапе своего развития.
We soon realized that traditional data centers were quickly becoming outdated. They were not keeping up with the demands of what was happening technologically and environmentally. That’s when we kicked off our Generation 2 design. Gen 2 facilities started taking into account sustainability, energy efficiency, and really looking at the total cost of energy and operations.
Очень быстро мы поняли, что стандартные дата-центры очень быстро становятся устаревшими. Они не поспевали за темпами изменений технологических и экологических требований. Именно тогда мы стали разрабатывать ЦОД второго поколения. В этих дата-центрах Gen 2 стали принимать во внимание такие факторы как устойчивое развитие, энергетическая эффективность, а также общие энергетические и эксплуатационные.
No longer did we view data centers just for the upfront capital costs, but we took a hard look at the facility over the course of its life. Our Quincy, Washington and San Antonio, Texas facilities are examples of our Gen 2 data centers where we explored and implemented new ways to lessen the impact on the environment. These facilities are considered two leading industry examples, based on their energy efficiency and ability to run and operate at new levels of scale and performance by leveraging clean hydro power (Quincy) and recycled waste water (San Antonio) to cool the facility during peak cooling months.
Мы больше не рассматривали дата-центры только с точки зрения начальных капитальных затрат, а внимательно следили за работой ЦОД на протяжении его срока службы. Наши объекты в Куинси, Вашингтоне, и Сан-Антонио, Техас, являются образцами наших ЦОД второго поколения, в которых мы изучали и применяли на практике новые способы снижения воздействия на окружающую среду. Эти объекты считаются двумя ведущими отраслевыми примерами, исходя из их энергетической эффективности и способности работать на новых уровнях производительности, основанных на использовании чистой энергии воды (Куинси) и рециклирования отработанной воды (Сан-Антонио) для охлаждения объекта в самых жарких месяцах.
As we were delivering our Gen 2 facilities into steel and concrete, our Generation 3 facilities were rapidly driving the evolution of the program. The key concepts for our Gen 3 design are increased modularity and greater concentration around energy efficiency and scale. The Gen 3 facility will be best represented by the Chicago, Illinois facility currently under construction. This facility will seem very foreign compared to the traditional data center concepts most of the industry is comfortable with. In fact, if you ever sit around in our container hanger in Chicago it will look incredibly different from a traditional raised-floor data center. We anticipate this modularization will drive huge efficiencies in terms of cost and operations for our business. We will also introduce significant changes in the environmental systems used to run our facilities. These concepts and processes (where applicable) will help us gain even greater efficiencies in our existing footprint, allowing us to further maximize infrastructure investments.
Так как наши ЦОД второго поколения строились из стали и бетона, наши центры обработки данных третьего поколения начали их быстро вытеснять. Главными концептуальными особенностями ЦОД третьего поколения Gen 3 являются повышенная модульность и большее внимание к энергетической эффективности и масштабированию. Дата-центры третьего поколения лучше всего представлены объектом, который в настоящее время строится в Чикаго, Иллинойс. Этот ЦОД будет выглядеть очень необычно, по сравнению с общепринятыми в отрасли представлениями о дата-центре. Действительно, если вам когда-либо удастся побывать в нашем контейнерном ангаре в Чикаго, он покажется вам совершенно непохожим на обычный дата-центр с фальшполом. Мы предполагаем, что этот модульный подход будет способствовать значительному повышению эффективности нашего бизнеса в отношении затрат и операций. Мы также внесем существенные изменения в климатические системы, используемые в наших ЦОД. Эти концепции и технологии, если применимо, позволят нам добиться еще большей эффективности наших существующих дата-центров, и тем самым еще больше увеличивать капиталовложения в инфраструктуру.
This is definitely a journey, not a destination industry. In fact, our Generation 4 design has been under heavy engineering for viability and cost for over a year. While the demand of our commercial growth required us to make investments as we grew, we treated each step in the learning as a process for further innovation in data centers. The design for our future Gen 4 facilities enabled us to make visionary advances that addressed the challenges of building, running, and operating facilities all in one concerted effort.
Это определенно путешествие, а не конечный пункт назначения. На самом деле, наш проект ЦОД четвертого поколения подвергался серьезным испытаниям на жизнеспособность и затраты на протяжении целого года. Хотя необходимость в коммерческом росте требовала от нас постоянных капиталовложений, мы рассматривали каждый этап своего развития как шаг к будущим инновациям в области дата-центров. Проект наших будущих ЦОД четвертого поколения Gen 4 позволил нам делать фантастические предположения, которые касались задач строительства, управления и эксплуатации объектов как единого упорядоченного процесса.
Тематики
Синонимы
EN
Русско-английский словарь нормативно-технической терминологии > модульный центр обработки данных (ЦОД)
-
19 направление мощности генератора (КОД ANSI - 32)
направление мощности генератора
Код ANSI -32
[В.Г. Гловацкий, И.В. Пономарев. Современные средства релейной защиты и автоматики электросетей. 2003 г.]EN
32. directional power relay
A relay that operates on a predetermined value of power flow in a given direction or upon reverse power flow such as that resulting from the motoring of a generator upon loss of its prime mover.
[ Источник]Тематики
Обобщающие термины
EN
Русско-английский словарь нормативно-технической терминологии > направление мощности генератора (КОД ANSI - 32)
См. также в других словарях:
Generator (computer science) — In computer science, a generator is a special routine that can be used to control the iteration behaviour of a loop. A generator is very similar to a function that returns an array, in that a generator has parameters, can be called, and generates … Wikipedia
electric generator — ▪ instrument Introduction also called dynamo, any machine that converts mechanical energy to electricity for transmission and distribution over power lines to domestic, commercial, and industrial customers. Generators also produce the… … Universalium
Cryptographically secure pseudorandom number generator — A cryptographically secure pseudo random number generator (CSPRNG) is a pseudo random number generator (PRNG) with properties that make it suitable for use in cryptography. Many aspects of cryptography require random numbers, for example: Key… … Wikipedia
Hardware random number generator — This SSL Accelerator computer card uses a hardware random number generator to generate cryptographic keys to encrypt data sent over computer networks. In computing, a hardware random number generator is an apparatus that generates random numbers… … Wikipedia
Entity-attribute-value model — (EAV), also known as object attribute value model and open schema is a data model that is used in circumstances where the number of attributes (properties, parameters) that can be used to describe a thing (an entity or object ) is potentially… … Wikipedia
thermoelectric power generator — Introduction any of a class of solid state devices (solid state device) that either convert heat directly into electricity or transform electrical energy into thermal power for heating or cooling. Such devices are based on thermoelectric… … Universalium
Simplified Wrapper and Interface Generator — SWIG Тип Инструмент для разработки Разработчики Сообщество ОС MS Windows Версия 1.3.33 23 ноября 2007 Лицензия Лицензия в стиле BSD Сайт … Википедия
Explosively pumped flux compression generator — An explosively pumped flux compression generator (EPFCG) is a device used to generate a high power electromagnetic pulse by compressing magnetic flux using high explosive.An EPFCG can be used only once as a pulsed power supply since the device is … Wikipedia
magnetohydrodynamic power generator — ▪ physics Introduction any of a class of devices that generate electric power by means of the interaction of a moving fluid (usually an ionized gas or plasma) and a magnetic field. Magnetohydrodynamic (MHD) power plants offer the potential… … Universalium
Random number generator attack — The security of cryptographic systems depends on some secret data that is known to authorized persons but unknown and unpredictable to others. To achieve this unpredictability, some randomization is typically employed. Modern cryptographic… … Wikipedia
Random password generator — A random password generator is software program or hardware device that takes input from a random or pseudo random number generator and automatically generates a password. Random passwords can be generated manually, using simple sources of… … Wikipedia